Prof. Savvas Tassou School of Engineering and Design, Brunel University

Energy Savings in Refrigerated Transport

WEST LONDON

University of BRISTOL Process Engineering Research Centre Bruneering West LONDON WEST LONDON WEST LONDON UNIVERSITY WEST LONDON UNIVERSITY UNIVERSITY UNIVERSITY UNIVERSITY UNIVERSITY

Transport Refrigeration Some facts and figures

- Food transport (motive power and refrigeration) responsible for 1.8 % of total UK greenhouse gas emissions [UKCERK. Catering policy]
- 650,000 refrigerated road vehicles in the EU
- European road freight 1800 mio t.km 3rd is refrigerated, around 600 mio t.km
- UK responsible for 8% of EU refrigerated road traffic, 48 mio t.km [CRT]

Transport Refrigeration Legislation and temperature control

- Temperature control requirements during storage and transport Chilled and frozen food products EC 852/2004
- Transport of food products across borders in EU (except fruit and vegetables) covered by ATP agreement. Agreement also covers equipment Bodies:
 - Normally insulated (IN) $k = 0.7 W/m^2 K$
 - Heavily insulated (IR) k= 0.4 W/m²K

University o

- Temperature control -20°C; -10°C; 0°C; +12°C
- Most common certification is for all temperature classes (FRC – mechanically refrigerated and Heavy insulation)

Transport Refrigeration Legislation and temperature control

- External dimensions for a semi-trailer rigid box
 - 13.56 m length (fixed); 2.6 m width (fixed); 2.75 height
- Internal dimensions:

University of

- 13.35 m length; 2.46 m width; 2.5 m height
- Width is designed to accommodate 2 europallets side by side (size of pallet 1.0 m deep; 1.2 m wide)
- Insulation material deteriorates with time by 3% to 5% per year. Significant impact on energy consumption
- Capacity of refrigeration system for new equipment (1.35 x heat transfer through the body and 1.75 x heat transfer if unit tested outside vehicle)
- ATP certificate valid for 6 years
- 1500 certificates in UK per year

Refrigeration Units

- independent diesel engine with direct drive to compressor and fans – chosen by majority
 of trailer transporters
- independent diesel engine driving generator to electrically power compressor and fans – majority of truck transporters
- Vehicle diesel engine driving generator / alternator to electrically power compressor and fans – small truck and van transporters
- Cryogenic refrigerant held under pressure and released as required (CO2 or Nitrogen for example)
- Eutectic systems charged at bay/RDC
- Hybrid systems

Refrigeration Units Approximate Drive Ranges (-20°C/+30°C)

	Body Volume (m ³)	Refrigeration Duty (W)	Equipment Weight (kg)
Vehicle Alternator Unit	<3	<400	<80
Direct Drive Unit	5 - 30	250 - 2,500	50 - 150
Auxiliary Alternator Unit	30 - 90+	2,000 - 14,000	100 - 500
Auxiliary Diesel Unit	30 - 90+	2,500 - 10,000	350 - 900*

* Includes electric standby

 $COP = 0.5 \sim 1.5$

Air Delivery Systems

Multi-compartment system

Air circulation

Other commercial systems

Eutectics

Sizing table

1144440	IIIII

Box internal Volume	Drops per hour	Approximate Holdover Capacity (@-33°C)	Approxi mate Mass
4m ³	4 drops/hr	6 kWh	80 to 100kg
20m ³	4 drops/hr	25 kWh	450 to 500kg

Cryogenic (total loss systems)

University of BRISTOL

- Liquefied carbon dioxide (CO₂) in an open system (Thermoking)
- Liquid CO₂ evaporates to provide cooling & is then vented to atmosphere
- Heat mode extension of engine coolant system
- System powered by vehicle battery (12 or 24V) when ignition on
- Electric standby (option)

Characteristics of CO₂ cryogenic systems

University o

- It is feasible to use cryogenic liquid carbon dioxide for food transport refrigeration for both rigid vehicles and articulated lorries
- Operating costs of the conventional and CO₂ systems will largely depend on the relative cost of diesel fuel and liquid CO₂
- The cost of CO₂ and the infrastructure required will reduce as the number of vehicles using cryogenic systems increases

Advantages of CO₂ cryogenic systems

- Silent operation
- Lower maintenance compared to vapour compression systems
- Rapid load pull-down and vey good temperature control
- Potentially zero GHG emissions if CO₂ is recovered from industrial processes (fertiliser manufacture)

Thermal Load

1. Transmission load

University of

search Centre

ondon outh bank

University of

Sunderland

- 2. Solar radiation load. In the analysis the solar radiation load
 - this can be integrated with the transmission load using an external temperature adjustment
- **3.** Product load
- 4. Infiltration air load (door openings)
- 5. Pre-cooling vehicle load

Examples of Thermal Loads

University of BRISTOI

Chilled distribution 43 kWh

Load	Contribution
Transmission	56%
Precooling	7.%
Product load	20%
Door openings	17%
Other loads	0%

Frozen distribution 80 kWh

Load	Contribution
Transmission	43%
Precooling	6.%
Product load	0%
Door openings	51%
Other loads	0.00%

Insulation

Aging of insulation 3% -7% per year

K coefficient increases from 0.4 to 0.62 in 9 years. Transmissions load increases by 50%

Refrigeration duties and fuel consumption

Food Refrigeration & Process Engineering Research Centre

ne

LONDON SOUTH BANK UNIVERSITY

University of Sunderland

4110

Body	Minimum		Required		Fuel consumption	
Inside Length/Inside	refrigeration capacity		refrigeration		(litre/hr)	
Volume/Type	long distan	ance capacity, multi drop				
	transport (transport (W) distribution (W)				
	-20 °C	0 °C	-20 °C	0 °C	-20 °C	0 °C
	k=0.4	k=0.7	k=0.4	k=0.7	k=0.4	k=0.7
	W/m ² K	$W/m^2 K$	$W/m^2 K$	$W/m^2 K$	$W/m^2 K$	$W/m^2 K$
6.2 m/ 33.42 m ³ / Rigid	3765	3876	5630	4554	2.0	1.5
Lorry						
10.4 m/ 61.15 m ³ /	6155	6353	9897	7920	3.0	2.5
Rigid Lorry						
13.4 m/78.79 m ³ / Semi	7730	7986	13500	10078	4.0	3.0
Trailer						

University of Sunderland

411

Refrigeration duties and fuel consumption

Vehicle class	Distance traveled		Fuel	Fuel	Overall	Percent
	and fuel		efficiency	consumption	vehicle fuel	refrigeration
	consumption		(motive)	of	efficiency	energy to
	(motive)			refrigeration	(motive plus	motive
				engine	refrigeration)	energy
	km/day	Litres/day	km/litre	Litres/day	km/litre	%
Medium rigid	409	111.3	3.7	21.0	3.09	18.9
Large rigid	286	90.71	3.15	17.7	2.63	19.5
City artic	335	112.33	2.98	26.1	2.42	23.2
32 tonne artic	419	140.8	2.97	34.1	2.40	24.2
38 tonne artic	486	159.62	3.04	24.9	2.52	15.6

- Select an insulated box with low K-value (minimise heat gain)
 - The use of vacuum insulation can reduce K value by 50% and resulting in 30% energy savings (payback period of around 6 years)
- Select an insulated box of the correct dimensions for the application to minimise surface area (minimise heat gain)
- Select a light-coloured ideally white body colour (minimise heat gain)
- Have box cleaned frequently and check for damaged insulation (thermal imaging)

Refrigeration unit

select the right refrigeration unit for the application (over or under-specified equipment can result in fuel wastage)

reliability

Contractive of University of

earch Centr

- installed cost
- operational cost
- global warming potential
- weight
- engine emissions
- fuel efficiency
- fuel availability

Operational considerations

- load the vehicle avoiding blockage of air passages & use maximum load - height lines to guide operators (maximise air circulation, minimise resistance)
- load goods fully pre-cooled to required set-point or below it (minimise heat load on unit)
- use a temperature controlled sealed loading dock (minimise heat gain)
- minimise frequency and duration of door openings
- use door curtains (up to 40% savings in frozen food multidrop operation

- Use door switches to automatically turn unit off when doors are open
- Select the appropriate refrigeration unit set-point for food transported, not a lower one (avoid unnecessary unit operation)
- Select the appropriate unit operating mode : stop/start for frozen, modulation for fresh (optimum unit efficiency)
- Park vehicle out of direct sunlight where possible

University o

- Maximise vehicle utilisation avoid partial loads
- Thorough driver training & established Standard Operating Procedures